Upper bounds for the formula size of the majority function
نویسنده
چکیده
It is shown that the counting function of n Boolean variables can be implemented with the formulae of size O(n3.06) over the basis of all 2-input Boolean functions and of size O(n4.54) over the standard basis. The same bounds follow for the complexity of any threshold symmetric function of n variables and particularly for the majority function. Any bit of the product of binary numbers of length n can be computed by formulae of size O(n4.06) or O(n5.54) depending on basis. Incidentally the bounds O(n3.23) and O(n4.82) on the formula size of any symmetric function of n variables with respect to the basis are obtained.
منابع مشابه
Formula Complexity of Ternary Majorities
It is known that any self-dual Boolean function can be decomposed into compositions of 3-bit majority functions. In this paper, we define a notion of a ternary majority formula, which is a ternary tree composed of nodes labeled by 3-bit majority functions and leaves labeled by literals. We study their complexity in terms of formula size. In particular, we prove upper and lower bounds for ternar...
متن کاملA Stronger LP Bound for Formula Size Lower Bounds via Clique Constraints
We introduce a new technique proving formula size lower bounds based on the linear programming bound originally introduced by Karchmer, Kushilevitz and Nisan [11] and the theory of stable set polytope. We apply it to majority functions and prove their formula size lower bounds improved from the classical result of Khrapchenko [13]. Moreover, we introduce a notion of unbalanced recursive ternary...
متن کاملEstimating Upper and Lower Bounds For Industry Efficiency With Unknown Technology
With a brief review of the studies on the industry in Data Envelopment Analysis (DEA) framework, the present paper proposes inner and outer technologies when only some basic information is available about the technology. Furthermore, applying Linear Programming techniques, it also determines lower and upper bounds for directional distance function (DDF) measure, overall and allocative efficienc...
متن کاملSeparation of AC[⊕] Formulas and Circuits
This paper gives the first separation between the power of formulas and circuits of equal depth in the AC[⊕] basis (unbounded fan-in AND, OR, NOT and MOD2 gates). We show, for all d(n) ≤ O( logn log logn ), that there exist polynomial-size depth-d circuits that are not equivalent to depth-d formulas of size n (moreover, this is optimal in that n cannot be improved to n). This result is obtained...
متن کاملSeparation of AC0[⊕] Formulas and Circuits
This paper gives the first separation between the power of formulas and circuits of equal depth in the AC0[⊕] basis (unbounded fan-in AND, OR, NOT and MOD2 gates). We show, for all d(n) ≤ O( logn log logn ), that there exist polynomial-size depth-d circuits that are not equivalent to depth-d formulas of size no(d) (moreover, this is optimal in that no(d) cannot be improved to nO(d)). This resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1208.3874 شماره
صفحات -
تاریخ انتشار 2012